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Abstract

In this paper, we show that both sphere covering problems and optimal polytope approximation of
convex bodies are related to optimal Delaunay triangulations, which are the triangulations minimiz-
ing the interpolation error between functigr(|2 and its linear interpolant based on the underline
triangulations. We then develop a new analysis based on the estimate of the interpolation error to get
the Coxeter—Few—Rogers lower bound for the thickness in the sphere covering problem and a new
estimate of the constant gedppeared in the optimal polytope approximation of convex bodies.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and statement of results

The Delaunay triangulation (DT) of a finite point $&tan be defined by the empty sphere
property: no vertices i are inside the circumsphere of any simplex in the triangulation.
In [5], we characterized the DT from a function approximation point of view.

Letus denot&d (T, f, p) = I f — fi.7llLr(@), wheref; 7(x) is the linear interpolation
of a continuous functiofbased on a triangulatiofi of a domain® c R". Let Py be the
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set of all triangulations that have a given ¥edf vertices and? is chosen as the convex
hull of V. We have shown ifb] that

Q(DT, |x|1%, p) = min O(T, Ix|I?, p), for 1< p<ooc. 1
TEPV

For a more general function, a function-dependent DT is then defined to be an optimal
triangulation that minimizes the interpolation error for this function and its construction
can be obtained by a simple lifting and projection procedure.

The optimal Delaunay triangulation (ODT) introduced % is the one that minimizes
the interpolation error among all triangulations with the same number of vertices. More
precisely7* is an ODT inPy if

O(T™, f,p)=_inf O(T, f, p), for some K p< oo, )
TePy

wherePy stands for the set of all triangulations with at mbistertices. Such a function-
dependent ODT is proved to exist for any given convex continuous function and a necessary
condition for an optimal triangulation is also obtained5h
In this paper, we will discuss two special ODTs which minim@é7, ||x||2, co) and
O(T, Ix|I2, 1), respectively. The first one corresponds to the sphere covering problem and
the second one is related to the optimal polytope approximation of convex bodies.
Roughly speaking, sphere covering problem is to seek the most economical way to cover
a domain® in R" with overlapping balls of equal size. Let us denBtgx, r) = {y € R" :
ly — x| <r} andS, (x, r) its boundary. If center is or radius is 1, it will be omitted. For a
convex domairf2 ¢ R”, we define the thickneds, as

0, = lim Igf N; B, (r)]/1€],

whereN, is the minimum number of balls with radinsmeeded to cover the domain andl
is the standard Lebesgue measure. In the literature, the thickness is always defined as the
limit when the domain goes t&" while using the unit bal[27]. However it is equivalent
to let the radius go to zero by the scaling argument. The choice of the convex dQrirain
the definition above is somewhat arbitrary since we have a theorem by HlawK27spe
4]) which says any convex domain leads to an equivalent definition. In other words, it is
saying that in the asymptotic sense we can neglect the affection of the boundary of
Now we consider the problem in the other way around.L.et {x,-}f\’:1 be a finite point
set such that the convex hullgfis 2. We use these points as the centers of balls and denote
the minimum radius needed to co¥by R}, . If we let RS, = infxzy_x RY,, by the standard
& — N argument, it is easy to show that

0, =liminf N|B,(R$)|/1€|.
N—o00

The sphere covering problem is then translated into finding the optimal distributidn of
points which will coincide with the vertices of an ODT. More precisely, we shall prove that

R$)2 = inf 2 0).
(Ry) TIEHPN O(T, IIx]I%, 00)
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We then derive a lower bound for the interpolation egfT", ||x||2, co) which results a
new approach to obtain Coxeter—Few—Rogers lower boudq [H]. Let

' n/2—1
A
o amli)

where¢,, is the solid angle of a vertex of threregular simplex; See Section 3 for details.

Theorem 1.1.
0,>1,, 1<n < oo.

Furthermore we can only achieve this lower bound by regular triangulationifet 1, 2,
and thus
2n

01=1,0=—.
1 2 33

The regular triangulation in the theorem above means the triangulation with all simplices
are regular, i.e. all the edge lengths in the triangulation are equal. It is well known that only
forn = 1,2, we can have a regular tessellationRf(see, for examplgg]). This is the
reason why we have so many open problems in dimensions higher than two.

Let us now discuss briefly the second problems on the optimal polytope approximation
to a convex body. A convex body is a compact convex subg@t @fith non-empty interior.

We denote’ the space of all convex bodies®f ands" (-, -) the volume difference metric
on the spac€, i.e.3" (C, D) = |C U D| — |C N D|. For a given convex bodg € C, let
P}'\, be the set of all polytopes inscribed @with at mostN vertices and" (C, Pjv) =
inf pepy, 8V (C, P).In[18], Gruber showed that for a convex bodwhose boundary is of
classC? with Gauss curvaturec > 0 in R, there exists a constant gelepending only
onn such that

n+2
n

im NE6Y(CPL) = Sdel, <f Ko (X) 72 da(x)) : 3)
N—o00 2 oc

whereo is the ordinary surface area measurefifh. Further de] = 1/6, and del =
1/ (Zﬁ) Again forn >3, it is difficult, if it is not impossible, to get the exact value.
There are some estimates about,d&#,19,20]. We shall present a sharper estimate for the
constant dglin this paper.

Forn = 1, (3) was indicated by Fejes Tath?] and proved by McClure and Vita[21].
Proof forn = 2 is due to Grubefl5] and the general case was obtained by Gr{ib&}.
For other forms of optimal approximating polytopes with respect to other metrics, we refer
to[1,13,16,17].

Remark 1.2. In view of the characterization theory of the nonlinear approximgtlj,
to retain the asymptotic formula for' (C, Pj), 0C must have certain regularity in terms
of Besov norms.
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Since Gauss curvature only appears in the last term of (3), to estimateelein choose
any convenient convex body we want. By considering the parab@loigk|?), it is easy
to show that (c.f[18])

del, = lim N%" inf T, IX|I2, 1)/|1Q%/"+1
Iy Jm A OCT, IXII7, D /12|

for any convex domai® ¢ R”. With the lower and upper bound 6f(7, ||x||2, 1), we get
an estimate of the constant glel

Theorem 1.3.
n+l/ 1, \" n+1/ 0, \?"
<del, < —— :
n+2 \|Byl n+2 \|Byl

where| B, | is the volume of the unit ball iRR".

Our estimate is asymptotic exact when dimensi@oes to infinity.

Corollary 1.4.
. del 1
lim =
n—oo n 2me

The asymptotic exact estimate is also obtainefP0]. However our approach here is
simpler and more straightforward. Fer= 1, 2 sincef, = t,, the estimate is exact, i.e.

we obtain del = 1/6,and dep} = 1/ (Zﬁ) by our estimate. Although the thickness in

the upper bound are not known fee> 3, any reasonable upper boundéyfcan be used

to bound dg] above. For example, by choosing a special lattice sphere covering scheme
(see[7, p. 36]), which is the thinnest covering known in all dimensierns23, we get a
computable formula for the upper bound that is

n
del, <(n + D)V/" P

4
Whenn large, we may use the upper bound obtained by Rdgéis

0, <nlnn+nlIninn+5n, forn>3.
Comparing with the result of Mankiewicz and ScHd],

n 1 n 1 TI'n+2+2/n)

—— ———<del, <
n+2 |Bn|2/n b n+2 |Bn|2/n (n +1)!

’ =

our lower bound is sharper and the upper bound (4) is sharper in lower dimensioa8)n
The reason for the upper bound (4) becomes worse wiet¥ is that the sphere covering
scheme we choose are away from the optimal one especially wieiarge. Actually
iMoo + 1)Y7/12 = ¢/12 > 1/(2ne).
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2. Sphere covering problem and the proof of Theorem 1.1

LetV be a finite point set such that the convex hulMok 2. Recall that the minimum
radius needed to cové? is denoted byr},. With the same point sat, there is a DT of2.
The following lemma reveals the connection between sphere covering problems and DTs.

Lemma 2.1. (R$)? = Q(DT, |x||?,00) = min Q(T, x|, c0).
TEPV

Proof. Let us look at a simplex with vertices{xi};’ill. For fx) = |x||%, by the multiple

points Taylor expansion ([6, p. 128]), we know

n+1

A = F00 =D 4j0]IX = X;I* < Emax, ()

j=1

where/; (x) is the barycenter coordinate »in r and Emay denotesQ (z, [|x]|2, 0o). Since
> Ji(x) = 1, (5) implies that, first, there exists a vertexsuch that||x — X;i 12 < Emax
which means C U?;rllB(x,», E#azx) and, secondly fox* at which the error attains the

maximum vaIue,Z’}:% Ix* — xj||2 = Emax, Which means to cover with balls of equal

size centered at its vertices, the minimum radquﬁé,zx.

We thus proved that for any triangulatiGne Py, if we use vertices as centers of balls,
the square of the minimum radius needed to cover the doma7s |x||2, o). By the
optimality of DTs (see (1)) we finish the proof[]

As a direct consequence, the optimal distribution of the centers of the covering balls
coincides with the vertices of an optimal DT.

Corollary 2.2.

C\2 _ 2
(Ry) —TlngN O(T, IX|I*, 00).

We then derive a lower bound for the interpolation erga(T, ||x||2, cc).

Lemma 2.3.
2/n
2 n n! 2/n
9 X b 2 b 6
0 IXI% 00) > = =l 6)

where the equality holds if and onlyiifis regular.

Proof. By (5), E(X) := fj(X) — f(x) only depends on the quadratic part of the function.
Hence we may considef(x) = [|Ix — Xo||2, wherex, is the circum center of. By looking
at this way, we get

EX) = fi(x) — fF(X) = g1(X) — g(¥) = RZ — ||x — XolI?, @)
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whereR; is the radius of the circum sphereoflf Xo € 1, thenEpax = RTZ. (6) is a well
known geometric inequality for a simplex, for example §&& p. 515]and the equality
holds if and only ifz is regular.

OtherwiseE (x) attains its maximum at*, the projection ok, to 7, i.e. Emax = Rl_2 -
IXo — x*||2. In this casex* is on some facet of 7, which is an(n — 1)-simplex. By the
definition of the projection, fox € o

2 2 2
[X = X*[I“ + IX* — Xoll“ = [IX — Xoll“. 8)

Without lose of generality, we may assumé opposite to vertex,, .1, namely it is made
up byxs, X2, ..., X,. By (8), all the distances betwean(1<i <n) andx* are equal. Thus
x* is the circum center of and Ernax is the square of the radius of the circum sphere.of
By the characterization of the projectioxy — x*) - (X,+1 — Xx*) <0, we get

2 2 2
Xn4+1 — X" 1 = IXp+1 — Xoll“ + [Xo — X*[| 4+ 2(Xp41 — Xo) - (Xo — X)
2 2
= R — |IXo — X*[|“ + 2(Xp41 — X*) - (Xo — X¥)
< R? — |I%o — X*|I2.

Thust C B,(X*, EE2).

We then construct a simplex with |t'| > |z| which is inscribed toB(x*, Erl{fx) Let
us choose a coordinate such tiétis the origin ands is on x"*1 = 0. Suppose the
coordinate of the vertex which oppositesatds v = (v1, v2, ..., v"t1). We change it to
V=02 L (Emax— Y 11 (v)?)Y/2). Thenv’ ando gives us an inscribed simplex
and obviouslyjz’| > |z|. Applying the first case te@’, we finish the proof. [

Theorem 2.4. Let Nt be the number of simplices in the triangulation, we have

O(T. X2, 00) > LCy oo N7 " 215
where
n nl2/n

The equality holds if and only if is a regular triangulation,namely all edges of are
equal.

LCy 0o =

Proof. By Lemma6 and the Cauchy inequality,
O(T. [IX]|?, 00) = max O(x, X%, 00) = Y~ Q(x. X% 00) /N7
te €T
> LCuoo Y W2 /N1 LCyooNT 7 25
T

The equality holds if and only i©(, [|X||?, 00) = LC,.»o|7|%" = constant Vt € T, i.e.
T is a regular triangulation. [

Now we are going to connect the number of simplid@gsand number of verticehl.
Forn = 1, itis trivial to show limy_, . N/Nt = 1. Let us consider triangulations in two
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dimension. We sum anglégs , of triangles in two different ways, namely elementwise and
pointwise. We can easily show

Nt 3
27N > Z <Z qﬁrl_,k) = TNT,

i=1 \k=1
and
1

lim N
N—oo NT T2

Thus with Theoren®.4we proved that, = 1,0, = 21/3V/3.
To deal with higher dimensions, we shall introduce the concept of the solid angle. The
following definition and lemma are adopted from Zong’s b{@K].

Definition 2.5. Let P be a polytope iR with verticesvy, vo, . . ., Vi, and write
Vi={vi+AX—V;) : x e P,1>0}.

Then we call
dVi) = [Sn(vi, 1) N Vils

thesolid angleof P atv;, where| - | means the surface area.

For a regular simplex, all the solid angles are equal. We denote di,by et , :=
IS:1s/¢, be the number of equilateral simplices surrounding a vertex. The intgger
is corresponding to a regular triangulation which is only possible:fes 1,2; See for
exampl€g8].

The following important lemma was introduced by Coxeter ef%l.The proof can be
found in[27].

Lemma 2.6. Lett be an n-dimensional simplewjth verticesvy, vo, ..., V,4+1. Then

n+1

> i) =+ D,

i=1
where the equality holds whertis a regular simplex.
With this lemma, we apply the same argument as that in the two dimensions to get an
inequality betweeN andNt.

Corollary 2.7. For a triangulation7,

i)n—i—l
Nt Kn

Now we are in the position to prove Theorem 1.1
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Proof of Theorem 1.1. We will use abbreviatiorQ ,(7) = Q(T, x|, p), 1< p<oo.
Since

N|B,(QYA(T))| N NrQMAT)

0, = liminf =Iliminf |B,|— ,
n I int | nINT 7]

N—o0 |.Q|
the result follows from Theorer®d.4and Corollary2.7. O

However it is not easy to get a computable formuladprHere we list an asymptotic
formula obtained by Rogef26].

n
T, ~ —= whenn — oo. 9)
e/e

The proof can be found §27].

3. Optimal polytope approximation of convex bodies and the proof of Theorem 1.3

In this section, we follow the same line in Section 2 to estimate the constanRisall
that

d6|; = lim N2/n inf Q('T7 ||X||2, 1)/|Q|2/n+l.
TEPN

N—o0

We first present an explicit formula for the interpolation erg(7", ||x||2, 1).

Lemma 3.1.
1 n(n+1)/2
2 2
’ X 51 = T A, A~ d ’
QT IXI% 1) = oy Sl Yz
T k=1

whered, ; is the kth edge length of

Proof. Recall that in a simplex, fi() — f(X) = >_; 4;(X)[x — x;[12. Let us write
X —X; =Y ; (X —X;), we then have

n+1
OO = FO0 =Y Aidj(% — X)) - (X = X)) (10)
i,j=1
Using the symmetry of indek j, we can write it as

n+1
AO) = FOO =D Jidj(Xj = Xi) - (X = X;). (12)
i,j=1
Combining (10) and (11) gives us

n+1

A= FOO =Y 400L0X —X)>2.

i,j=li<j
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Taking the integration and using the fact

|7l

[0 ix= s

we get the key formula

| n(n+1)/2

I o 2
(n+2)(n+1) kzzl ok (12)

/ A0 — FO0dX =

The desired result follows by summing them u.l

The following geometric inequality can be found[24, p. 517]. For two dimensions, it
is a direct consequence of the well-known Heron’s formula of a triangle.

Lemma 3.2. For an n-simplex, we have

n(n+1)/2 2
D SRl
k=1 RS

and the equality holds if and onlyfis regular.

Theorem 3.3. For a triangulation7 of a bounded domaif® with N1 simpliceswe have

n+2

2
O(T, IXI%, )= LCyaNT 7 |Q| 7,

where
n nt2/n
LCh1=——" ———F—.
m1 n+2 (n+ 1)

The equality holds if and only if is an regular triangulationnamely all edges of are
equal.

Proof. By Lemmas3.1and3.2, we have

Nt

-2 n+2

QT IXIZ D=>LCu1 Y I5l¥ "> LCy Ny 21915
i=1

First equality holds if and only it;’s are regular and the second one holds if and only if
|t;|'s are equal. Thus the equality holds if and only if all edge lengths are equal.

Remark 3.4. In general, we have

_2 | ond2
O(T, IXI%, p)= LCy yN7~11Q| v, 1< p<oo.

The expression of.C, , is implicitly contained inf4].
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Proof of Theorem 1.3. Combing Theoren3.3with the lower bound oV / Nt (see Corol-
lary 2.7), we will prove the lower bound for dgli.e.

n+1l/ 1, )2/”
del, > .
h n+2(|Bn|

Without loss of generality, we may choo&esuch thaiQ2| = 1. For any triangulatioff” of
Q, we have

N 2/n ) n+1 2/n n+1 T 2/n
NYouy =(—) NY"0uT) > LCy1 = " .
01(T) (NT) T 01(T) o = B

The desired result is obtained by senditp co.
To prove the upper bound

2
n+1 0,1)"
del, <— ,
b n+2<|Bn|

we use a geometric inequality for a simplefsee[24, p. 515])

n+1
> dZ <(n+1)°R%
i=1

er in the right side can be modified 1 (z, ||x||2, o) by the same argument as that in

Lemma6. Combining with Lemm&.1, we know

n(n+1)/2

1 n+1
= 2, | <—= 7)|Q|.
AT = 5D > (m Z ) = Qo (DI
teT i=1
For simplicity, we choos¢?| = 1. For any7 with N vertices we have
+1 1
del, <N?/"Q1(T) < T2 (N Q&)™
n+2

The desired result then follows.[]

Proof of Corollary 1.4. By the asymptotic formula of,, (9), we know lim),_, ‘c,%/" =1
On the other hand, Rogei®5] gives an upper bound fak,,

0, <nlnn+nlinlnn + 5n, for n>3.

Thus lim,_ o0 07" = 1.
It is well known that
7.l:n/2
T2+ 1)
With Stirling’s formula

(n+1)/2
T2+ 1) ~ v/2me /2 (g) U

|Bnl
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we get

. de : 1 1
lim —Iﬂ =Ilm —— = —. O
n—o0o n n—co n|B,|%/" 2me

4. Concluding remarks

In this paper, we have shown the new connection between sphere covering problems,
optimal polytope approximation of convex bodies and linear approximation of function
[Ix||2. Based on this approach, we give a new analysis of those problems and get a new proof
of Coxeter—Few—Rogers lower bound for the thickness in the sphere covering problem.
More importantly, we get a new estimate of the constant delthe optimal polytopes
approximation to the convex bodies.

Note that the Hessian matrix of functiir||2 corresponds to Euclidean metric. By chang-
ing the approximate function, we may study the sphere covering problems and polytopes
approximation of convex bodies in a more general metric. For example using our approach,
it is easy to derive some classic res{it§] in the spherical space.

We have developed some mesh generation techniques by minimizing the interpolation
error Q(T, f, p) in [2,3]. The connection of the ODT with the sphere covering and the
duality of sphere covering and sphere packing suggest that sphere packing or covering can
be used in the mesh generation; $28,22]. On the other hand, the techniques used in
the mesh improvements like mesh smoothi2jgcan be used as a numerical algorithm to
compute a better sphere covering scheme.
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