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Abstract

In this paper, we show that both sphere covering problems and optimal polytope approximation of
convex bodies are related to optimal Delaunay triangulations, which are the triangulations minimiz-
ing the interpolation error between function‖x‖2 and its linear interpolant based on the underline
triangulations. We then develop a new analysis based on the estimate of the interpolation error to get
the Coxeter–Few–Rogers lower bound for the thickness in the sphere covering problem and a new
estimate of the constant deln appeared in the optimal polytope approximation of convex bodies.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and statement of results

TheDelaunay triangulation (DT) of a finite point setVcan be defined by the empty sphere
property: no vertices inV are inside the circumsphere of any simplex in the triangulation.
In [5], we characterized the DT from a function approximation point of view.
Let us denoteQ(T , f, p) = ‖f − fI,T ‖Lp(�), wherefI,T (x) is the linear interpolation

of a continuous functionf based on a triangulationT of a domain� ⊂ Rn. LetPV be the
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set of all triangulations that have a given setV of vertices and� is chosen as the convex
hull of V. We have shown in[5] that

Q(DT, ‖x‖2, p) = min
T ∈PV

Q(T , ‖x‖2, p), for 1�p�∞. (1)

For a more general function, a function-dependent DT is then defined to be an optimal
triangulation that minimizes the interpolation error for this function and its construction
can be obtained by a simple lifting and projection procedure.
The optimal Delaunay triangulation (ODT) introduced in[5] is the one that minimizes

the interpolation error among all triangulations with the same number of vertices. More
preciselyT ∗ is an ODT inPN if

Q(T ∗, f, p) = inf
T ∈PN

Q(T , f, p), for some 1�p�∞, (2)

wherePN stands for the set of all triangulations with at mostN vertices. Such a function-
dependent ODT is proved to exist for any given convex continuous function and a necessary
condition for an optimal triangulation is also obtained in[5].
In this paper, we will discuss two special ODTs which minimizeQ(T , ‖x‖2,∞) and

Q(T , ‖x‖2, 1), respectively. The first one corresponds to the sphere covering problem and
the second one is related to the optimal polytope approximation of convex bodies.
Roughly speaking, sphere covering problem is to seek the most economical way to cover

a domain� in Rn with overlapping balls of equal size. Let us denoteBn(x, r) = {y ∈ Rn :
‖y− x‖�r} andSn(x, r) its boundary. If center iso or radius is 1, it will be omitted. For a
convex domain� ⊂ Rn, we define the thickness�n as

�n = lim inf
r→0

Nr |Bn(r)|/|�|,

whereNr is the minimum number of balls with radiusr needed to cover the domain and| · |
is the standard Lebesgue measure. In the literature, the thickness is always defined as the
limit when the domain goes toRn while using the unit ball[27]. However it is equivalent
to let the radius go to zero by the scaling argument. The choice of the convex domain� in
the definition above is somewhat arbitrary since we have a theorem by Hlawka (see[27, p.
4]) which says any convex domain leads to an equivalent definition. In other words, it is
saying that in the asymptotic sense we can neglect the affection of the boundary of�.
Now we consider the problem in the other way around. LetV = {xi}Ni=1 be a finite point

set such that the convex hull ofV is�.We use these points as the centers of balls and denote
theminimum radius needed to cover� byRc

V . If we letR
c
N = inf #V=N Rc

V , by the standard
� − N argument, it is easy to show that

�n = lim inf
N→∞ N |Bn(R

c
N)|/|�|.

The sphere covering problem is then translated into finding the optimal distribution ofN
points which will coincide with the vertices of an ODT. More precisely, we shall prove that

(Rc
N)

2 = inf
T ∈PN

Q(T , ‖x‖2,∞).
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We then derive a lower bound for the interpolation errorQ(T , ‖x‖2,∞) which results a
new approach to obtain Coxeter–Few–Rogers lower bound of�n [9]. Let

�n = �n

n!√
n + 1

(
n

n + 1

)n/2−1

,

where�n is the solid angle of a vertex of then-regular simplex; See Section 3 for details.

Theorem 1.1.

�n��n, 1�n < ∞.

Furthermore,we can only achieve this lower bound by regular triangulation forn = 1,2,
and thus

�1 = 1,�2 = 2�

3
√
3
.

The regular triangulation in the theorem abovemeans the triangulation with all simplices
are regular, i.e. all the edge lengths in the triangulation are equal. It is well known that only
for n = 1,2, we can have a regular tessellation ofRn(see, for example,[8]). This is the
reason why we have so many open problems in dimensions higher than two.
Let us now discuss briefly the second problems on the optimal polytope approximation

to a convex body.A convex body is a compact convex subset ofRn with non-empty interior.
We denoteC the space of all convex bodies inRn and�V (·, ·) the volume difference metric
on the spaceC, i.e.�V (C,D) = |C ∪ D| − |C ∩ D|. For a given convex bodyC ∈ C, let
P i
N be the set of all polytopes inscribed toC with at mostN vertices and�V (C,P i

N ) =
infP∈PN

�V (C, P ). In [18], Gruber showed that for a convex bodyCwhose boundary is of
classC2 with Gauss curvature�C > 0 inRn+1, there exists a constant deln depending only
onn such that

lim
N→∞N

2
n �V (C,P i

N ) = 1

2
deln

(∫
�C

�C(x)
1

n+2 d	(x)
) n+2

n

, (3)

where	 is the ordinary surface area measure inRn. Further del1 = 1/6, and del2 =
1/
(
2
√
3
)
. Again for n�3, it is difficult, if it is not impossible, to get the exact value.

There are some estimates about deln [14,19,20]. We shall present a sharper estimate for the
constant deln in this paper.
Forn = 1, (3) was indicated by Fejes Tóth[12] and proved by McClure and Vitale[21].

Proof forn = 2 is due to Gruber[15] and the general case was obtained by Gruber[18].
For other forms of optimal approximating polytopes with respect to other metrics, we refer
to [1,13,16,17].

Remark 1.2. In view of the characterization theory of the nonlinear approximation[10],
to retain the asymptotic formula for�V (C,P i

N ), �C must have certain regularity in terms
of Besov norms.
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Since Gauss curvature only appears in the last term of (3), to estimate deln we can choose
any convenient convex body we want. By considering the paraboloid(x, ‖x‖2), it is easy
to show that (c.f.[18])

deln = lim
N→∞ N2/n inf

T ∈PN

Q(T , ‖x‖2, 1)/|�|2/n+1

for any convex domain� ⊂ Rn. With the lower and upper bound ofQ(T , ‖x‖2, 1), we get
an estimate of the constant deln.

Theorem 1.3.

n + 1

n + 2

(
�n

|Bn|
)2/n

�deln� n + 1

n + 2

(
�n

|Bn|
)2/n

,

where|Bn| is the volume of the unit ball inRn.

Our estimate is asymptotic exact when dimensionn goes to infinity.

Corollary 1.4.

lim
n→∞

deln
n

= 1

2�e
.

The asymptotic exact estimate is also obtained in[20]. However our approach here is
simpler and more straightforward. Forn = 1,2 since�n = �n, the estimate is exact, i.e.

we obtain del1 = 1/6, and del2 = 1/
(
2
√
3
)
by our estimate. Although the thickness in

the upper bound are not known forn�3, any reasonable upper bound of�n can be used
to bound deln above. For example, by choosing a special lattice sphere covering scheme
(see[7, p. 36]), which is the thinnest covering known in all dimensionsn�23, we get a
computable formula for the upper bound that is

deln�(n + 1)1/n
n

12
. (4)

Whenn large, we may use the upper bound obtained by Rogers[25],

�n < n ln n + n ln ln n + 5n, for n�3.

Comparing with the result of Mankiewicz and Schütt[20],

n

n + 2

1

|Bn|2/n �deln� n

n + 2

1

|Bn|2/n

(n + 2+ 2/n)

(n + 1)! , n�2

our lower bound is sharper and the upper bound (4) is sharper in lower dimensions (n�13).
The reason for the upper bound (4) becomes worse whenn�14 is that the sphere covering
scheme we choose are away from the optimal one especially whenn is large. Actually
limn→∞(n + 1)1/n/12= e/12> 1/(2�e).
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2. Sphere covering problem and the proof of Theorem 1.1

LetV be a finite point set such that the convex hull ofV is �. Recall that the minimum
radius needed to cover� is denoted byRc

V . With the same point setV, there is a DT of�.
The following lemma reveals the connection between sphere covering problems and DTs.

Lemma 2.1. (Rc
V )

2 = Q(DT, ‖x‖2,∞) = min
T ∈PV

Q(T , ‖x‖2,∞).

Proof. Let us look at a simplex� with vertices{xi}n+1
i=1 . For f (x) = ‖x‖2, by the multiple

points Taylor expansion ([6, p. 128]), we know

fI(x) − f (x) =
n+1∑
j=1

�j (x)‖x − xj‖2�Emax, (5)

where�i (x) is the barycenter coordinate ofx in � andEmax denotesQ(�, ‖x‖2,∞). Since∑
�i (x) = 1, (5) implies that, first, there exists a vertexxi such that‖x − xi‖2�Emax

which means� ⊂ ⋃n+1
i=1 B(xi , E

1/2
max), and, secondly forx∗ at which the error attains the

maximum value,
∑n+1

j=1 ‖x∗ − xj‖2 = Emax, which means to cover� with balls of equal

size centered at its vertices, the minimum radius isE
1/2
max.

We thus proved that for any triangulationT ∈ PV , if we use vertices as centers of balls,
the square of the minimum radius needed to cover the domain isQ(T , ‖x‖2,∞). By the
optimality of DTs (see (1)) we finish the proof.�

As a direct consequence, the optimal distribution of the centers of the covering balls
coincides with the vertices of an optimal DT.

Corollary 2.2.

(Rc
N)

2 = inf
T ∈PN

Q(T , ‖x‖2,∞).

We then derive a lower bound for the interpolation errorQ(T , ‖x‖2,∞).

Lemma 2.3.

Q(�, ‖x‖2,∞)� n

n + 1

n!2/n
(n + 1)1/n

|�|2/n, (6)

where the equality holds if and only if� is regular.

Proof. By (5),E(x) := fI(x) − f (x) only depends on the quadratic part of the function.
Hence we may considerg(x) = ‖x − xo‖2, wherexo is the circum center of�. By looking
at this way, we get

E(x) = fI(x) − f (x) = gI(x) − g(x) = R2
� − ‖x − xo‖2, (7)
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whereR� is the radius of the circum sphere of�. If xo ∈ �, thenEmax = R2
� . (6) is a well

known geometric inequality for a simplex, for example see[24, p. 515]and the equality
holds if and only if� is regular.
OtherwiseE(x) attains its maximum atx∗, the projection ofxo to �, i.e.Emax = R2

� −
‖xo − x∗‖2. In this casex∗ is on some facet	 of �, which is an(n − 1)-simplex. By the
definition of the projection, forx ∈ 	

‖x − x∗‖2 + ‖x∗ − xo‖2 = ‖x − xo‖2. (8)

Without lose of generality, we may assume	 is opposite to vertexxn+1, namely it is made
up byx1, x2, . . . , xn. By (8), all the distances betweenxi (1� i�n) andx∗ are equal. Thus
x∗ is the circum center of	 andEmax is the square of the radius of the circum sphere of	.
By the characterization of the projection(xo − x∗) · (xn+1 − x∗)�0, we get

‖xn+1 − x∗‖2 = ‖xn+1 − xo‖2 + ‖xo − x∗‖2 + 2(xn+1 − xo) · (xo − x∗)
= R2

� − ‖xo − x∗‖2 + 2(xn+1 − x∗) · (xo − x∗)
� R2

� − ‖xo − x∗‖2.
Thus� ⊂ Bn(x∗, E1/2

max).
We then construct a simplex�′ with |�′|� |�| which is inscribed toB(x∗, E1/2

max). Let
us choose a coordinate such thatx∗ is the origin and	 is on xn+1 = 0. Suppose the
coordinate of the vertex which opposites to	 is v = (v1, v2, . . . , vn+1). We change it to
v′ = (v1, v2, . . . , (Emax−∑n

i=1(v
i)2)1/2). Thenv′ and	 gives us an inscribed simplex�′

and obviously|�′|� |�|. Applying the first case to�′, we finish the proof. �

Theorem 2.4. LetNT be the number of simplices in the triangulation, we have

Q(T , ‖x‖2,∞)�LCn,∞N
− 2

n

T |�| 2n ,
where

LCn,∞ = n

n + 1

n!2/n
(n + 1)1/n

.

The equality holds if and only ifT is a regular triangulation,namely all edges ofT are
equal.

Proof. By Lemma6 and the Cauchy inequality,

Q(T , ‖x‖2,∞) = max
�∈T

Q(�, ‖x‖2,∞)�
∑
�∈T

Q(�, ‖x‖2,∞)/NT

� LCn,∞
∑
�∈T

|�|2/n/NT�LCn,∞NT
− 2

n �
2
n .

The equality holds if and only ifQ(�, ‖x‖2,∞) = LCn,∞|�|2/n = constant, ∀� ∈ T , i.e.
T is a regular triangulation.�

Now we are going to connect the number of simplicesNT and number of verticesN.
Forn = 1, it is trivial to show limN→∞ N/NT = 1. Let us consider triangulations in two
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dimension.We sum angles��,k of triangles in two different ways, namely elementwise and
pointwise. We can easily show

2�N >

NT∑
i=1

(
3∑

k=1

��i ,k

)
= �NT,

and

lim
N→∞

N

NT
= 1

2
.

Thus with Theorem2.4we proved that�1 = 1,�2 = 2�/3
√
3.

To deal with higher dimensions, we shall introduce the concept of the solid angle. The
following definition and lemma are adopted from Zong’s book[27].

Definition 2.5. LetP be a polytope inRn with verticesv1, v2, . . . , vk, and write

Vi = {vi + �(x − vi ) : x ∈ P, ��0}.
Then we call

�(vi ) = |Sn(vi , 1)∩ Vi |s
thesolid angleof P atvi , where| · |s means the surface area.

For a regular simplex, all the solid angles are equal. We denote it by�n. Let �n :=
|Sn|s/�n be the number of equilateral simplices surrounding a vertex. The integer�n

is corresponding to a regular triangulation which is only possible forn = 1,2; See for
example[8].
The following important lemma was introduced by Coxeter et al.[9]. The proof can be

found in[27].

Lemma 2.6. Let � be an n-dimensional simplex,with verticesv1, v2, . . . , vn+1. Then

n+1∑
i=1

�(vi )�(n + 1)�n,

where the equality holds when� is a regular simplex.

With this lemma, we apply the same argument as that in the two dimensions to get an
inequality betweenN andNT.

Corollary 2.7. For a triangulationT ,

N

NT
� n + 1

�n

.

Now we are in the position to prove Theorem 1.1
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Proof of Theorem 1.1.We will use abbreviationQp(T ) = Q(T , ‖x‖2, p), 1�p�∞.
Since

�n = lim inf
N→∞

N |Bn(Q
1/2∞ (T ))|

|�| = lim inf
N→∞ |Bn| N

NT

NTQ
n/2∞ (T )

|�| ,

the result follows from Theorem2.4and Corollary2.7. �

However it is not easy to get a computable formula for�n. Here we list an asymptotic
formula obtained by Rogers[26].

�n ∼ n

e
√
e
whenn → ∞. (9)

The proof can be found at[27].

3. Optimal polytope approximation of convex bodies and the proof of Theorem 1.3

In this section, we follow the same line in Section 2 to estimate the constant deln. Recall
that

deln = lim
N→∞ N2/n inf

T ∈PN

Q(T , ‖x‖2, 1)/|�|2/n+1.

We first present an explicit formula for the interpolation errorQ(T , ‖x‖2, 1).

Lemma 3.1.

Q(T , ‖x‖2, 1) = 1

(n + 2)(n + 1)

∑
�∈T

|�|
n(n+1)/2∑

k=1

d2�,k,

whered�,k is the kth edge length of�.

Proof. Recall that in a simplex�, fI(x) − f (x) = ∑
j �j (x)‖x − xj‖2. Let us write

x − xj = ∑
i �i (xi − xj ), we then have

fI(x) − f (x) =
n+1∑
i,j=1

�i�j (xi − xj ) · (x − xj ). (10)

Using the symmetry of indexi, j , we can write it as

fI(x) − f (x) =
n+1∑
i,j=1

�i�j (xj − xi ) · (x − xi ). (11)

Combining (10) and (11) gives us

fI(x) − f (x) =
n+1∑

i,j=1,i<j

�i (x)�j (x)(xi − xj )2.
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Taking the integration and using the fact∫
�
�i (x)�j (x) dx = |�|

(n + 2)(n + 1)
,

we get the key formula

∫
�
|fI(x) − f (x)| dx = |�|

(n + 2)(n + 1)

n(n+1)/2∑
k=1

d2�,k. (12)

The desired result follows by summing them up.�

The following geometric inequality can be found at[24, p. 517]. For two dimensions, it
is a direct consequence of the well-known Heron’s formula of a triangle.

Lemma 3.2. For an n-simplex�, we have

n(n+1)/2∑
k=1

d2k � n(n + 1)n!2/n
(n + 1)1/n

|�|2/n

and the equality holds if and only if� is regular.

Theorem 3.3. For a triangulationT of a bounded domain� withNT simplices,we have

Q(T , ‖x‖2, 1)�LCn,1NT
− 2

n |�| n+2
n ,

where

LCn,1 = n

n + 2

n!2/n
(n + 1)1/n

.

The equality holds if and only ifT is an regular triangulation,namely all edges ofT are
equal.

Proof. By Lemmas3.1and3.2, we have

Q(T , ‖x‖2, 1)�LCn,1

NT∑
i=1

|�i |2/n+1�LCn,1N
−2/n
T |�| n+2

n .

First equality holds if and only if�i ’s are regular and the second one holds if and only if
|�i |’s are equal. Thus the equality holds if and only if all edge lengths are equal.�

Remark 3.4. In general, we have

Q(T , ‖x‖2, p)�LCn,pNT
− 2

n |�| n+2
n , 1�p�∞.

The expression ofLCn,p is implicitly contained in[4].
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Proof of Theorem 1.3.Combing Theorem3.3with the lower bound ofN/NT (see Corol-
lary 2.7), we will prove the lower bound for deln, i.e.

deln� n + 1

n + 2

(
�n

|Bn|
)2/n

.

Without loss of generality, we may choose� such that|�| = 1. For any triangulationT of
�, we have

N2/nQ1(T ) =
(

N

NT

)2/n

N
2/n
T Q1(T )�

(
n + 1

�n

)2/n

LCn,1 = n + 1

n + 2

(
�n

|Bn|
)2/n

.

The desired result is obtained by sendingN to∞.
To prove the upper bound

deln� n + 1

n + 2

(
�n

|Bn|
) 2

n

,

we use a geometric inequality for a simplex� (see[24, p. 515])

n+1∑
i=1

d2�,i �(n + 1)2R2
� .

R2
� in the right side can be modified toQ(�, ‖x‖2,∞) by the same argument as that in

Lemma6. Combining with Lemma3.1, we know

Q1(T ) = 1

(n + 2)(n + 1)

∑
�∈T


|�|

n(n+1)/2∑
i=1

d2�,i


 � n + 1

n + 2
Q∞(T )|�|.

For simplicity, we choose|�| = 1. For anyT with N vertices we have

deln�N2/nQ1(T )� n + 1

n + 2
(NQ

n
2∞(T ))2/n.

The desired result then follows.�

Proof of Corollary 1.4. By the asymptotic formula of�n (9), we know limn→∞ �2/nn = 1.
On the other hand, Rogers[25] gives an upper bound for�n,

�n < n ln n + n ln ln n + 5n, for n�3.

Thus limn→∞ �2/nn = 1.
It is well known that

|Bn| = �n/2


(n/2+ 1)
.

With Stirling’s formula


(n/2+ 1) ∼ √
2�e−n/2

(n
2

)(n+1)/2
,
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we get

lim
n→∞

deln
n

= lim
n→∞

1

n|Bn|2/n = 1

2�e
. �

4. Concluding remarks

In this paper, we have shown the new connection between sphere covering problems,
optimal polytope approximation of convex bodies and linear approximation of function
‖x‖2. Based on this approach, we give a new analysis of those problems and get a new proof
of Coxeter–Few–Rogers lower bound for the thickness in the sphere covering problem.
More importantly, we get a new estimate of the constant deln in the optimal polytopes
approximation to the convex bodies.
Note that theHessianmatrix of function‖x‖2 corresponds toEuclideanmetric. By chang-

ing the approximate function, we may study the sphere covering problems and polytopes
approximation of convex bodies in a more general metric. For example using our approach,
it is easy to derive some classic results[11] in the spherical space.
We have developed some mesh generation techniques by minimizing the interpolation

errorQ(T , f, p) in [2,3]. The connection of the ODT with the sphere covering and the
duality of sphere covering and sphere packing suggest that sphere packing or covering can
be used in the mesh generation; See[23,22]. On the other hand, the techniques used in
the mesh improvements like mesh smoothing[2] can be used as a numerical algorithm to
compute a better sphere covering scheme.
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